
Vasanth Tovinkere | Architect, Flow Graph Analyzer
Intel® Corporation

*Other names and brands may be claimed as the property of others

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 2

What will be covered today

Task-based parallelism and task graphs
• Challenges

Overview of Intel® Advisor - Flow Graph Analyzer (FGA)

Walking through a sample

Summary

3

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Task-based parallelism

Advantages of task-based parallelism

• Makes parallelization efficient for irregular and runtime dependent execution

• Promotes higher level thinking

• Improves load balancing

Tasks with dependencies

• Fall into two categories: explicit and implicit

• Extends the expressiveness of task-based parallel programming

• Reduces need for global synchronization mechanism such as task barriers

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 5

Applications often contain multiple levels of parallelism

Task Parallelism/ Message
Passing

fork-join fork-join

SIMD SIMD SIMD SIMD SIMD SIMD SIMD SIMD

Visible in FGA

Visible in FGA

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 6

Asynchronous task graphs (implicit vs. explicit)
OpenMP*

Hello World

task task

#pragma omp parallel
{

#pragma omp single
{

std::string s;
{

#pragma omp task depend(out: s)
{

s = “Hello ”;
cout << s;

}
#pragma omp task depend(out: s)
{

s = “World!\n”;
cout << s;

}
}

}
}

Threading Building Blocks (TBB)

f() f()

task task

graph g;
continue_node<continue_msg> h(g,

[](continue_msg &) {
cout << “Hello “;

});

continue_node<continue_msg> w(g,
[](continue_msg &) {

cout << “World!\n“;
});

make_edge(h, w);
h.try_put(continue_msg());
g.wait_for_all();

Implicit dependency
derived from the
depend clause, in this
case the variable ‘s’

Explicit dependency
expressed through the
make_edge() call

Implicit Explicit

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 7

Challenges with asynchronous task graphs

Creating implicit or explicit task graphs programmatically is easy

• Determining what was created is hard in many cases

New programming paradigm

Allows you to stream data through the graph, which makes debugging challenging

Graph algorithms can be latency-bound or throughput-bound

Parallelism is unstructured in certain types of graphs, so performance analysis can be
challenging

8

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Intel® Advisor – Flow Graph Analyzer

Palette of supported
TBB node types

organized in like groups

Toolbar supporting basic file and edition operations, visualization and analytics
that operate on the graph or performance traces

Canvas for visualizing
graphs

Displays the execution trace data, graph
statistics and output generated by

custom analytics and allows interactions
with this data

Hierarchical view of the
graph displayed shown

as a tree

General health of the
graph displayed as a

tree-map

The area of the squares
represent the CPU time

taken by a node as a
percentage of the

application run and the
color indicates the

concurrency observed
when that node was

active

Workflows and UI features

10

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

Workflows: Create, Debug, Visualize and Analyze
Design mode

• Allows you to create a graph topology interactively

• Validate the graph and explore what-if scenarios

• Add C/C++ code to the node body

• Export C++ code using Threading Building Blocks (TBB) flow graph API

Analysis mode

• Compile your application (with tracing enabled)

• Capture execution traces during the application run

• Visualize/analyze in Flow Graph Analyzer

Creating Asynchronous Task-graphs

12

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 13

Intel® Advisor – Flow Graph Analyzer (Design mode)
Graph Creation

Drag and Drop Support

Interactive Canvas

Analytics and Modeling

Validation

Code Generation

Let’s make this our
“hello” node

Drag and Drop Support

Interactive Canvas

Code Generation

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

Intel® Advisor – Flow Graph Analyzer (Design mode)
Serialization

GraphML* file format – uses extensions C/C++ code generated from the graph

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 15

Challenges With asynchronous task graphs

ü New programming paradigm

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 16

Intel® Advisor – Flow Graph Analyzer (Design mode)
Compiling and collecting traces

>cl hello_world.cpp /O2 /DTBB_USE_THREADING_TOOLS ... /link tbb.lib /OUT:hello_world.exe

>set FGT_ROOT=<installation-directory>\fga\fgt

Path must be updated so fgtrun.bat and fgt2xml.exe can be run from the command line

>set INTEL_LIBITTNOTIFY64=<installation-directory>\fga\fgt\windows\bin\intel64\<vc-version>\fgt.dll

>hello_world.exe

>fgt2xml.exe <name-for-the-trace-data-file>

Traces are saved to a unique directory _fgt_<date>_<time>

Automatically converts the latest timestamped directory

Understanding Graph Execution

17

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 18

Examining the trace data: what’s possible?
“hello” node in all views that
represent different information.

Shows trace information for the
case when 1 message is sent to
the “hello” node.

How did we get the node names to
be the same as what was in the C++
code?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 19

Examining the trace data: correlation
“hello” node in all views that
represent different information.

Shows trace information for the
case when 25 messages are sent
to the “hello” node.

Interacting with the timeline

Clicking on a task in the timeline
will highlight the corresponding
node in the canvas

Interacting with the canvas

Clicking on a node on the canvas
can highlight the corresponding
node’s tasks in the timeline. This
is turned OFF by default.

Clicking on a section with low
concurrency will highlight the
nodes that are active at that time.

These nodes would be the starting
point of a cause-and-effect analysis
to see if they were responsible for
the lower concurrency

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 20

Examining the trace data through Trace Playback
Playback of execution traces to see
how data is flowing through the
graph.

Allows you to see how the data
flows through the graph and what
sections of the graph result in good
or poor scaling

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
21

Examining the trace data: node view

Node view captures all execution

traces for a given node and presents

it in a single swim-lane for the node

Each node swimlane is comprised of

multiple swimlanes representing the

threads which executed an instance

of the node.

Provides a compact representation of a

node’s execution

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 22

Challenges With asynchronous task graphs

ü New programming paradigm

ü Allows you to stream data through the graph, which makes debugging challenging

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 23

Examining the trace data with data analysis

How do we know which instance of
the Hello task is in response to which
input message?

Helps answer the following
questions:

Are the tasks operating on data
retiring in order?

Are they out of order?

We need to track the data flowing
through the graph

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

Examining the trace data with data analysis, cont.
Harder to track the data in dependency graphs as the Data ID cannot be propagated
from one node to the next

• continue_node requires an input of type continue_msg

We are going to convert the Hello World example to use function_node instead so we
can send the ID from one node to the next

continue_node<continue_msg> hello(hello_world_g0, [](continue_msg &) {
cout << “Hello “;

});

continue_node<continue_msg> world((hello_world_g0,[](continue_msg &) {
cout << “World!\n“;

});

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

Examining the trace data with data analysis, cont.

Data tracking using an experimental
feature will allow you to track which
task instance is for which inputs.

1. We changed our graph to use a
function_node instead of a
continue_node

2. We have a source_node that
streams 25 messages/data
through the graph

3. We modified the graph to emit
the data id from the node
source to hello and hello to
world.

4. We add an user event API to tell
the tool which data we are
processing in each node.

Gives you insight into
scheduler behavior.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

Examining the trace data with data analysis, cont.

Data tracking using an experimental
feature will allow you to track which
task instance is for which inputs

Statistics for the graph is organized
by data operated on and can be seen
in Data Analysis tab under Statistics

Using data analysis, the questions
posed earlier can be answered.

You can examine the trace data to
see if the data is retiring in-order or
out-of-order.

If the algorithm is meant to be
latency bound, then order is
important. If it is throughput bound,
data can retire out-of-order

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
27

Challenges with asynchronous task graphs

ü New programming paradigm

ü Allows you to stream data through the graph, which makes debugging challenging

ü Graph algorithms can be latency-bound or throughput-bound

Understanding the performance

28

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

A simulation example

Goes through multiple time steps

Graph is created once programmatically and executed for each time step

• A message is sent to the graph to trigger each time step

• Wait for the graph to process the message (current time step) before the next time
step is triggered

• Implemented as a dependency graph using TBB continue_node

Measured performance shows some performance scaling w.r.t serial implementation

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 30

Example: performance analysis
A complex graph was created
programmatically.

Graph has 1319 nodes and 3066
edges.

General health of the graph with a
mix of red, yellow and green

Concurrency observed over time
ranges from good concurrency where
all cores are kept busy to very few
kept busy

What do the colors mean?

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
31

Challenges with asynchronous task graphs

ü Creating implicit or explicit task-graphs programmatically is easy

ü Determining what was created is hard in many cases

ü New programming paradigm

ü Allows you to stream data through the graph, which makes debugging challenging

ü Graph algorithms can be latency-bound or throughput-bound

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
32

Example: identifying problem areas
What was run and how much was
run?

Run captures 11 time steps

Appears to have one node that
consumes a lot of CPU time.

This node also has an observed
concurrency that is poor when it
executes

Clicking on the node takes you to the
node in the graph visualization

You can also sort on the appropriate
column in the statistics table.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 33

Example: identifying problem areas, cont.

Clicking on the node takes you to the
node in the graph visualization

1. To see all tasks belonging to
this node in the execution
trace, you will have to enable
this interaction.

2. Click on the Show/Hide tasks
button

3. Now select the node in the
canvas

When this node is executing, the
resource utilization is very poor.

1. Improving the performance of
this one node will substantially
improve the performance of
the graph.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
34

Example: critical path
Analysis features

1. Critical Path
2. Rule-check

Critical Path

Computes the Critical Path(s) for the
graph using the execution trace
information

Critical path reduces the complexity in large graphs by isolating a small set of nodes for analysis and tuning for performance improvements

The most dominant task that had
the maximum CPU Time and a
corresponding low concurrency
(continue_node_1009) is on this
critical path

What else can we look at?

35

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
36

Example: performance analysis
Analysis features

1. Critical Path
2. Rule-check

Rule check

Rule-check runs registered rules that
may include validation and
performance rules

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
37

Challenges with asynchronous task graphs

ü Creating implicit or explicit task-graphs programmatically is easy

ü Determining what was created is hard in many cases

ü New programming paradigm

ü Allows you to stream data through the graph, which makes debugging challenging

ü Graph algorithms can be latency-bound or throughput-bound

ü Parallelism is unstructured in certain types of graphs, so performance analysis can be
challenging

What does it look like in FGA?

38

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 39

Applications often contain multiple levels of parallelism

Task Parallelism/ Message
Passing

#pragma omp parallel for tbb::parallel_for

SIMD SIMD SIMD SIMD SIMD SIMD SIMD SIMD

Visible in FGA

Visible in FGA

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
40

Fork-join parallelism: tbb::parallel_for

Captures the execution task-graph
for a fork-join construct and provides
additional analytics that present
information about the construct

1. Imbalance
2. Efficiency

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
41

Multi-level parallelism: graph level + fork-join

Timeline shows trace information for
the graph and any nested parallelism
that is present

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 42

Multi-level parallelism in OpenMP*
Top-level here shows just one entity,
which is a parallel region in this
OpenMP* example

Top-level treemap shows poor
resource utilization

Hovering the mouse over the
treemap shows activity in the parallel
region – double click to show the
details

Double-click on the parallel region
node to see the activity within the
region

Download through Intel® Advisor package

43

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Advisor – Flow Graph Analyzer

Product feature in Intel® Parallel
Studio XE 2019

Tool supports analysis and design of
parallel applications using OpenMP*
and Threading Building Blocks

Available for Windows*, Linux* and
MacOS*

https://software.intel.com/en-us/articles/getting-started-with-
flow-graph-analyzer

https://software.intel.com/en-us/articles/getting-started-with-flow-graph-analyzer

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
45

Summary

Asynchronous task-graphs improves the efficiency of irregular and runtime dependent

execution

• TBB and OpenMP* provide mechanisms to program in this manner

Flow Graph Analyzer helps you create, debug, visualize and analyze such graphs

• Critical path analysis is crucial in reducing the complexity of the analysis problem

to a handful of nodes

• Runtime specific analyses, such as the lightweight policy analysis for TBB, target

additional performance improvements

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
46

Resources

Getting started with FGA
https://software.intel.com/en-us/articles/getting-started-with-flow-graph-analyzer

Driving Code Performance with Intel® Advisor’s Flow Graph Analyzer

https://software.intel.com/en-us/download/parallel-universe-magazine-issue-30-october-2017

IWOMP 2018: Visualization of OpenMP* Task Dependencies Using Intel®
Advisor – Flow Graph Analyzer

https://link.springer.com/chapter/10.1007%2F978-3-319-98521-3_12

CPUs, GPUs, FPGAs: Managing the alphabet soup with Intel Threading Building
Blocks

https://software.intel.com/en-us/videos/cpus-gpus-fpgas-managing-the-alphabet-soup-with-intel-
threading-building-blocks

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of Intel Corporation
or its subsidiaries in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

47

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

